Asymptotic Expansions for the Stirling Numbers of the First Kind
نویسنده
چکیده
Let s(n,m) denote the (unsigned) Stirling numbers of the first kind: s(n,m) := [w] (w(w + 1) · · · (w + n− 1)) (1 ≤ m ≤ n, n ≥ 1). Many different asymptotic expressions for s(n,m), as n→∞, have been proposed in the literature due to their wide applications, cf. Temme [8] for a brief survey of known results together with a uniform asymptotic expansion valid for all m, 1 ≤ m ≤ n. Recently, Wilf [10] provided a considerably more explicit formula when m = O(1), m ≥ 1. His main result is, for m = O(1),
منابع مشابه
Mode and Edgeworth Expansion for the Ewens Distribution and the Stirling Numbers
We provide asymptotic expansions for the Stirling numbers of the first kind and, more generally, the Ewens (or Karamata-Stirling) distribution. Based on these expansions, we obtain some new results on the asymptotic properties of the mode and the maximum of the Stirling numbers and the Ewens distribution. For arbitrary θ > 0 and for all sufficiently large n ∈ N, the unique maximum of the Ewens ...
متن کاملModified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملStirling Numbers and Generalized Zagreb Indices
We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.
متن کاملSome Properties of Associated Stirling Numbers
Abstract In this paper, we discuss the properties of associated Stirling numbers. By means of the method of coefficients, we establish a series of identities involving associated Stirling numbers, Bernoulli numbers, harmonic numbers, and the Cauchy numbers of the first kind. In addition, we give the asymptotic expansion of certain sums involving 2-associated Stirling numbers of the second kind ...
متن کاملOn xD-Generalizations of Stirling Numbers and Lah Numbers via Graphs and Rooks
This paper studies the generalizations of the Stirling numbers of both kinds and the Lah numbers in association with the normal ordering problem in the Weyl algebra W = 〈x,D|Dx − xD = 1〉. Any word ω ∈ W with m x’s and n D’s can be expressed in the normally ordered form ω = xm−n ∑ k>0 { ω k } xkDk, where { ω k } is known as the Stirling number of the second kind for the word ω. This study consid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 71 شماره
صفحات -
تاریخ انتشار 1995